stdx.allocator.building_blocks.region 0/51(0%) line coverage

      
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700
6710
6720
6730
6740
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6900
6910
6920
6930
6940
6950
6960
6970
6980
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7390
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7800
7810
7820
7830
7840
/// module stdx.allocator.building_blocks.region; import stdx.allocator.building_blocks.null_allocator; import stdx.allocator.common; import std.typecons : Flag, Yes, No; /** A $(D Region) allocator allocates memory straight from one contiguous chunk. There is no deallocation, and once the region is full, allocation requests return $(D null). Therefore, $(D Region)s are often used (a) in conjunction with more sophisticated allocators; or (b) for batch-style very fast allocations that deallocate everything at once. The region only stores three pointers, corresponding to the current position in the store and the limits. One allocation entails rounding up the allocation size for alignment purposes, bumping the current pointer, and comparing it against the limit. If $(D ParentAllocator) is different from $(D NullAllocator), $(D Region) deallocates the chunk of memory during destruction. The $(D minAlign) parameter establishes alignment. If $(D minAlign > 1), the sizes of all allocation requests are rounded up to a multiple of $(D minAlign). Applications aiming at maximum speed may want to choose $(D minAlign = 1) and control alignment externally. */ struct Region(ParentAllocator = NullAllocator, uint minAlign = platformAlignment, Flag!"growDownwards" growDownwards = No.growDownwards) { static assert(minAlign.isGoodStaticAlignment); static assert(ParentAllocator.alignment >= minAlign); import std.traits : hasMember; import std.typecons : Ternary; // state /** The _parent allocator. Depending on whether $(D ParentAllocator) holds state or not, this is a member variable or an alias for `ParentAllocator.instance`. */ static if (stateSize!ParentAllocator) { ParentAllocator parent; } else { alias parent = ParentAllocator.instance; } private void* _current, _begin, _end; /** Constructs a region backed by a user-provided store. Assumes $(D store) is aligned at $(D minAlign). Also assumes the memory was allocated with $(D ParentAllocator) (if different from $(D NullAllocator)). Params: store = User-provided store backing up the region. $(D store) must be aligned at $(D minAlign) (enforced with $(D assert)). If $(D ParentAllocator) is different from $(D NullAllocator), memory is assumed to have been allocated with $(D ParentAllocator). n = Bytes to allocate using $(D ParentAllocator). This constructor is only defined If $(D ParentAllocator) is different from $(D NullAllocator). If $(D parent.allocate(n)) returns $(D null), the region will be initialized as empty (correctly initialized but unable to allocate). */ this(ubyte[] store) { store = cast(ubyte[])(store.roundUpToAlignment(alignment)); store = store[0 .. $.roundDownToAlignment(alignment)]; assert(store.ptr.alignedAt(minAlign)); assert(store.length % minAlign == 0); _begin = store.ptr; _end = store.ptr + store.length; static if (growDownwards) _current = _end; else _current = store.ptr; } /// Ditto static if (!is(ParentAllocator == NullAllocator)) this(size_t n) { this(cast(ubyte[])(parent.allocate(n.roundUpToAlignment(alignment)))); } /* TODO: The postblit of $(D BasicRegion) should be disabled because such objects should not be copied around naively. */ /** If `ParentAllocator` is not `NullAllocator` and defines `deallocate`, the region defines a destructor that uses `ParentAllocator.delete` to free the memory chunk. */ static if (!is(ParentAllocator == NullAllocator) && hasMember!(ParentAllocator, "deallocate")) ~this() { parent.deallocate(_begin[0 .. _end - _begin]); } /** Alignment offered. */ alias alignment = minAlign; /** Allocates $(D n) bytes of memory. The shortest path involves an alignment adjustment (if $(D alignment > 1)), an increment, and a comparison. Params: n = number of bytes to allocate Returns: A properly-aligned buffer of size $(D n) or $(D null) if request could not be satisfied. */ void[] allocate(size_t n) { static if (growDownwards) { if (available < n) return null; static if (minAlign > 1) const rounded = n.roundUpToAlignment(alignment); else alias rounded = n; assert(available >= rounded); auto result = (_current - rounded)[0 .. n]; assert(result.ptr >= _begin); _current = result.ptr; assert(owns(result) == Ternary.yes); return result; } else { auto result = _current[0 .. n]; static if (minAlign > 1) const rounded = n.roundUpToAlignment(alignment); else alias rounded = n; _current += rounded; if (_current <= _end) return result; // Slow path, backtrack _current -= rounded; return null; } } /** Allocates $(D n) bytes of memory aligned at alignment $(D a). Params: n = number of bytes to allocate a = alignment for the allocated block Returns: Either a suitable block of $(D n) bytes aligned at $(D a), or $(D null). */ void[] alignedAllocate(size_t n, uint a) { import std.math : isPowerOf2; assert(a.isPowerOf2); static if (growDownwards) { const available = _current - _begin; if (available < n) return null; auto result = (_current - n).alignDownTo(a)[0 .. n]; if (result.ptr >= _begin) { _current = result.ptr; return result; } } else { // Just bump the pointer to the next good allocation auto save = _current; _current = _current.alignUpTo(a); auto result = allocate(n); if (result.ptr) { assert(result.length == n); return result; } // Failed, rollback _current = save; } return null; } /// Allocates and returns all memory available to this region. void[] allocateAll() { static if (growDownwards) { auto result = _begin[0 .. available]; _current = _begin; } else { auto result = _current[0 .. available]; _current = _end; } return result; } /** Expands an allocated block in place. Expansion will succeed only if the block is the last allocated. Defined only if `growDownwards` is `No.growDownwards`. */ static if (growDownwards == No.growDownwards) bool expand(ref void[] b, size_t delta) { assert(owns(b) == Ternary.yes || b.ptr is null); assert(b.ptr + b.length <= _current || b.ptr is null); if (!b.ptr) return delta == 0; auto newLength = b.length + delta; if (_current < b.ptr + b.length + alignment) { // This was the last allocation! Allocate some more and we're done. if (this.goodAllocSize(b.length) == this.goodAllocSize(newLength) || allocate(delta).length == delta) { b = b.ptr[0 .. newLength]; assert(_current < b.ptr + b.length + alignment); return true; } } return false; } /** Deallocates $(D b). This works only if $(D b) was obtained as the last call to $(D allocate); otherwise (i.e. another allocation has occurred since) it does nothing. This semantics is tricky and therefore $(D deallocate) is defined only if $(D Region) is instantiated with $(D Yes.defineDeallocate) as the third template argument. Params: b = Block previously obtained by a call to $(D allocate) against this allocator ($(D null) is allowed). */ bool deallocate(void[] b) { assert(owns(b) == Ternary.yes || b.ptr is null); static if (growDownwards) { if (b.ptr == _current) { _current += this.goodAllocSize(b.length); return true; } } else { if (b.ptr + this.goodAllocSize(b.length) == _current) { assert(b.ptr !is null || _current is null); _current = b.ptr; return true; } } return false; } /** Deallocates all memory allocated by this region, which can be subsequently reused for new allocations. */ bool deallocateAll() { static if (growDownwards) { _current = _end; } else { _current = _begin; } return true; } /** Queries whether $(D b) has been allocated with this region. Params: b = Arbitrary block of memory ($(D null) is allowed; $(D owns(null)) returns $(D false)). Returns: $(D true) if $(D b) has been allocated with this region, $(D false) otherwise. */ Ternary owns(void[] b) const { return Ternary(b.ptr >= _begin && b.ptr + b.length <= _end); } /** Returns `Ternary.yes` if no memory has been allocated in this region, `Ternary.no` otherwise. (Never returns `Ternary.unknown`.) */ Ternary empty() const { return Ternary(_current == _begin); } /// Nonstandard property that returns bytes available for allocation. size_t available() const { static if (growDownwards) { return _current - _begin; } else { return _end - _current; } } } /// @system unittest { import std.algorithm.comparison : max; import stdx.allocator.building_blocks.allocator_list : AllocatorList; import stdx.allocator.mallocator : Mallocator; // Create a scalable list of regions. Each gets at least 1MB at a time by // using malloc. auto batchAllocator = AllocatorList!( (size_t n) => Region!Mallocator(max(n, 1024 * 1024)) )(); auto b = batchAllocator.allocate(101); assert(b.length == 101); // This will cause a second allocation b = batchAllocator.allocate(2 * 1024 * 1024); assert(b.length == 2 * 1024 * 1024); // Destructor will free the memory } @system unittest { import stdx.allocator.mallocator : Mallocator; // Create a 64 KB region allocated with malloc auto reg = Region!(Mallocator, Mallocator.alignment, Yes.growDownwards)(1024 * 64); const b = reg.allocate(101); assert(b.length == 101); // Destructor will free the memory } /** $(D InSituRegion) is a convenient region that carries its storage within itself (in the form of a statically-sized array). The first template argument is the size of the region and the second is the needed alignment. Depending on the alignment requested and platform details, the actual available storage may be smaller than the compile-time parameter. To make sure that at least $(D n) bytes are available in the region, use $(D InSituRegion!(n + a - 1, a)). Given that the most frequent use of `InSituRegion` is as a stack allocator, it allocates starting at the end on systems where stack grows downwards, such that hot memory is used first. */ struct InSituRegion(size_t size, size_t minAlign = platformAlignment) { import std.algorithm.comparison : max; import std.conv : to; import std.traits : hasMember; import std.typecons : Ternary; static assert(minAlign.isGoodStaticAlignment); static assert(size >= minAlign); version (X86) enum growDownwards = Yes.growDownwards; else version (X86_64) enum growDownwards = Yes.growDownwards; else version (ARM) enum growDownwards = Yes.growDownwards; else version (AArch64) enum growDownwards = Yes.growDownwards; else version (PPC) enum growDownwards = Yes.growDownwards; else version (PPC64) enum growDownwards = Yes.growDownwards; else version (MIPS32) enum growDownwards = Yes.growDownwards; else version (MIPS64) enum growDownwards = Yes.growDownwards; else version (SPARC) enum growDownwards = Yes.growDownwards; else version (SystemZ) enum growDownwards = Yes.growDownwards; else static assert(0, "Dunno how the stack grows on this architecture."); @disable this(this); // state { private Region!(NullAllocator, minAlign, growDownwards) _impl; union { private ubyte[size] _store = void; private double _forAlignmentOnly1 = void; } // } /** An alias for $(D minAlign), which must be a valid alignment (nonzero power of 2). The start of the region and all allocation requests will be rounded up to a multiple of the alignment. ---- InSituRegion!(4096) a1; assert(a1.alignment == platformAlignment); InSituRegion!(4096, 64) a2; assert(a2.alignment == 64); ---- */ alias alignment = minAlign; private void lazyInit() { assert(!_impl._current); _impl = typeof(_impl)(_store); assert(_impl._current.alignedAt(alignment)); } /** Allocates $(D bytes) and returns them, or $(D null) if the region cannot accommodate the request. For efficiency reasons, if $(D bytes == 0) the function returns an empty non-null slice. */ void[] allocate(size_t n) { // Fast path entry: auto result = _impl.allocate(n); if (result.length == n) return result; // Slow path if (_impl._current) return null; // no more room lazyInit; assert(_impl._current); goto entry; } /** As above, but the memory allocated is aligned at $(D a) bytes. */ void[] alignedAllocate(size_t n, uint a) { // Fast path entry: auto result = _impl.alignedAllocate(n, a); if (result.length == n) return result; // Slow path if (_impl._current) return null; // no more room lazyInit; assert(_impl._current); goto entry; } /** Deallocates $(D b). This works only if $(D b) was obtained as the last call to $(D allocate); otherwise (i.e. another allocation has occurred since) it does nothing. This semantics is tricky and therefore $(D deallocate) is defined only if $(D Region) is instantiated with $(D Yes.defineDeallocate) as the third template argument. Params: b = Block previously obtained by a call to $(D allocate) against this allocator ($(D null) is allowed). */ bool deallocate(void[] b) { if (!_impl._current) return b is null; return _impl.deallocate(b); } /** Returns `Ternary.yes` if `b` is the result of a previous allocation, `Ternary.no` otherwise. */ Ternary owns(void[] b) { if (!_impl._current) return Ternary.no; return _impl.owns(b); } /** Expands an allocated block in place. Expansion will succeed only if the block is the last allocated. */ static if (hasMember!(typeof(_impl), "expand")) bool expand(ref void[] b, size_t delta) { if (!_impl._current) lazyInit; return _impl.expand(b, delta); } /** Deallocates all memory allocated with this allocator. */ bool deallocateAll() { // We don't care to lazily init the region return _impl.deallocateAll; } /** Allocates all memory available with this allocator. */ void[] allocateAll() { if (!_impl._current) lazyInit; return _impl.allocateAll; } /** Nonstandard function that returns the bytes available for allocation. */ size_t available() { if (!_impl._current) lazyInit; return _impl.available; } } /// @system unittest { // 128KB region, allocated to x86's cache line InSituRegion!(128 * 1024, 16) r1; auto a1 = r1.allocate(101); assert(a1.length == 101); // 128KB region, with fallback to the garbage collector. import stdx.allocator.building_blocks.fallback_allocator : FallbackAllocator; import stdx.allocator.building_blocks.free_list : FreeList; import stdx.allocator.building_blocks.bitmapped_block : BitmappedBlock; import stdx.allocator.gc_allocator : GCAllocator; FallbackAllocator!(InSituRegion!(128 * 1024), GCAllocator) r2; const a2 = r2.allocate(102); assert(a2.length == 102); // Reap with GC fallback. InSituRegion!(128 * 1024, 8) tmp3; FallbackAllocator!(BitmappedBlock!(64, 8), GCAllocator) r3; r3.primary = BitmappedBlock!(64, 8)(cast(ubyte[])(tmp3.allocateAll())); const a3 = r3.allocate(103); assert(a3.length == 103); // Reap/GC with a freelist for small objects up to 16 bytes. InSituRegion!(128 * 1024, 64) tmp4; FreeList!(FallbackAllocator!(BitmappedBlock!(64, 64), GCAllocator), 0, 16) r4; r4.parent.primary = BitmappedBlock!(64, 64)(cast(ubyte[])(tmp4.allocateAll())); const a4 = r4.allocate(104); assert(a4.length == 104); } @system unittest { InSituRegion!(4096, 1) r1; auto a = r1.allocate(2001); assert(a.length == 2001); import std.conv : text; assert(r1.available == 2095, text(r1.available)); InSituRegion!(65_536, 1024*4) r2; assert(r2.available <= 65_536); a = r2.allocate(2001); assert(a.length == 2001); } private extern(C) void* sbrk(long); private extern(C) int brk(shared void*); /** Allocator backed by $(D $(LINK2 https://en.wikipedia.org/wiki/Sbrk, sbrk)) for Posix systems. Due to the fact that $(D sbrk) is not thread-safe $(HTTP lifecs.likai.org/2010/02/sbrk-is-not-thread-safe.html, by design), $(D SbrkRegion) uses a mutex internally. This implies that uncontrolled calls to $(D brk) and $(D sbrk) may affect the workings of $(D SbrkRegion) adversely. */ version(Posix) struct SbrkRegion(uint minAlign = platformAlignment) { import core.sys.posix.pthread : pthread_mutex_init, pthread_mutex_destroy, pthread_mutex_t, pthread_mutex_lock, pthread_mutex_unlock, PTHREAD_MUTEX_INITIALIZER; private static shared pthread_mutex_t sbrkMutex = PTHREAD_MUTEX_INITIALIZER; import std.typecons : Ternary; static assert(minAlign.isGoodStaticAlignment); static assert(size_t.sizeof == (void*).sizeof); private shared void* _brkInitial, _brkCurrent; /** Instance shared by all callers. */ static shared SbrkRegion instance; /** Standard allocator primitives. */ enum uint alignment = minAlign; /// Ditto void[] allocate(size_t bytes) shared { static if (minAlign > 1) const rounded = bytes.roundUpToMultipleOf(alignment); else alias rounded = bytes; pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); // Assume sbrk returns the old break. Most online documentation confirms // that, except for http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf, // which claims the returned value is not portable. auto p = sbrk(rounded); if (p == cast(void*) -1) { return null; } if (!_brkInitial) { _brkInitial = cast(shared) p; assert(cast(size_t) _brkInitial % minAlign == 0, "Too large alignment chosen for " ~ typeof(this).stringof); } _brkCurrent = cast(shared) (p + rounded); return p[0 .. bytes]; } /// Ditto void[] alignedAllocate(size_t bytes, uint a) shared { pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); if (!_brkInitial) { // This is one extra call, but it'll happen only once. _brkInitial = cast(shared) sbrk(0); assert(cast(size_t) _brkInitial % minAlign == 0, "Too large alignment chosen for " ~ typeof(this).stringof); (_brkInitial != cast(void*) -1) || assert(0); _brkCurrent = _brkInitial; } immutable size_t delta = cast(shared void*) roundUpToMultipleOf( cast(size_t) _brkCurrent, a) - _brkCurrent; // Still must make sure the total size is aligned to the allocator's // alignment. immutable rounded = (bytes + delta).roundUpToMultipleOf(alignment); auto p = sbrk(rounded); if (p == cast(void*) -1) { return null; } _brkCurrent = cast(shared) (p + rounded); return p[delta .. delta + bytes]; } /** The $(D expand) method may only succeed if the argument is the last block allocated. In that case, $(D expand) attempts to push the break pointer to the right. */ bool expand(ref void[] b, size_t delta) shared { if (b is null) return delta == 0; assert(_brkInitial && _brkCurrent); // otherwise where did b come from? pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); if (_brkCurrent != b.ptr + b.length) return false; // Great, can expand the last block static if (minAlign > 1) const rounded = delta.roundUpToMultipleOf(alignment); else alias rounded = bytes; auto p = sbrk(rounded); if (p == cast(void*) -1) { return false; } _brkCurrent = cast(shared) (p + rounded); b = b.ptr[0 .. b.length + delta]; return true; } /// Ditto Ternary owns(void[] b) shared { // No need to lock here. assert(!_brkCurrent || b.ptr + b.length <= _brkCurrent); return Ternary(_brkInitial && b.ptr >= _brkInitial); } /** The $(D deallocate) method only works (and returns $(D true)) on systems that support reducing the break address (i.e. accept calls to $(D sbrk) with negative offsets). OSX does not accept such. In addition the argument must be the last block allocated. */ bool deallocate(void[] b) shared { static if (minAlign > 1) const rounded = b.length.roundUpToMultipleOf(alignment); else const rounded = b.length; pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); if (_brkCurrent != b.ptr + rounded) return false; assert(b.ptr >= _brkInitial); if (sbrk(-rounded) == cast(void*) -1) return false; _brkCurrent = cast(shared) b.ptr; return true; } /** The $(D deallocateAll) method only works (and returns $(D true)) on systems that support reducing the break address (i.e. accept calls to $(D sbrk) with negative offsets). OSX does not accept such. */ bool deallocateAll() shared { pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0); return !_brkInitial || brk(_brkInitial) == 0; } /// Standard allocator API. Ternary empty() { // Also works when they're both null. return Ternary(_brkCurrent == _brkInitial); } } version(Posix) @system unittest { // Let's test the assumption that sbrk(n) returns the old address const p1 = sbrk(0); const p2 = sbrk(4096); assert(p1 == p2); const p3 = sbrk(0); assert(p3 == p2 + 4096); // Try to reset brk, but don't make a fuss if it doesn't work sbrk(-4096); } version(Posix) @system unittest { import std.typecons : Ternary; alias alloc = SbrkRegion!(8).instance; auto a = alloc.alignedAllocate(2001, 4096); assert(a.length == 2001); auto b = alloc.allocate(2001); assert(b.length == 2001); assert(alloc.owns(a) == Ternary.yes); assert(alloc.owns(b) == Ternary.yes); // reducing the brk does not work on OSX version(OSX) {} else { assert(alloc.deallocate(b)); assert(alloc.deallocateAll); } }